American University of Beirut

Exercise 1 (10 Points)

Let A, B, and C be sets. Show that:
(a) $(A \cup B) \subseteq(A \cup B \cup C)$

Solution:
$\{x \mid x \in(A \cup B)\}$ (Assumption)
$\rightarrow\{x \mid x \in A \vee x \in B\}$ (Definition of Union)
$\rightarrow\{x \mid x \in A \vee x \in B \vee x \in C\}$ (Addition)
$\rightarrow\{x \mid x \in(A \cup B \cup C)\}$ (Definition of Union)
(b) $(A \cap B \cap C) \subseteq(A \cap B)$

Solution:
$\{x \mid x \in(A \cap B \cap C)\}$ (Assumption)
$\rightarrow\{x \mid x \in A \wedge x \in B \wedge x \in C\}$ (Definition of Intersection)
$\rightarrow\{x \mid x \in A \wedge x \in B\}$ (Simplification)
$\rightarrow\{x \mid x \in A \cap B\}$ (Definition of Intersection)
(c) $(A-B)-C \subseteq A-C$

Solution:
$\{x \mid x \in((A-B)-C)\}$ (Assumption)
$\rightarrow\{x \mid((x \in A \wedge x \notin B) \wedge x \notin C)\}$ (Definition of Difference)
$\rightarrow\{x \mid((x \in A \wedge x \notin C)\}$ (Simplification - After use of commut. and Assoc. Laws on $\wedge)$
$\rightarrow\{x \mid x \in(A-C)\}$ (Definition of Difference)
(d) $(A-C) \cap(C-B)=\phi$ Solution:
$\{x \mid x \in(A-C) \cap(C-B)\}$ (Assumption)
$\rightarrow\{x \mid((x \in A \wedge x \notin C) \wedge(x \in C \wedge x \notin B)\}$ (Definition of Difference and Intersection)
$\rightarrow\{x \mid(x \in A \wedge(x \notin C \wedge x \in C) \wedge x \notin B\}$ (Commutativity)
$\rightarrow\{x \mid x \notin C \wedge x \in C\}$ (Simplification)
Contradiction, Therefore the logical expression is unsatisfiable (always has truth value "false"), which means that $(A-C) \cap(C-B)$ has no elements.
Hence, $(A-C) \cap(C-B)=\phi$
(e) $(B-A) \cup(C-A)=(B \cup C)-A$
$\{x \mid x \in(B-A) \cup(C-A)\}$ (Assumption)
$\leftrightarrow\{x \mid(x \in B \wedge x \notin A) \vee(x \in C \wedge x \notin A)\}$ (Definition of Difference and Union)
$\leftrightarrow\{x \mid(x \in B \vee x \in C) \wedge x \notin A\}$ (Distribution)
$\leftrightarrow\{x \mid x \in(B \cup C)-A\}$ (Definition of Difference and Union)
Since every step is an equivalence then $(B-A) \cup(C-A)=(B \cup C)-A$

Exercise 2 (10 Points)

Draw The Venn Diagrams for each of these combinations of the sets A, B, and C.
(a) $(A \cap B) \cup(A-C)$
\{the solution is the shaded areas\}

A B C
 A intersect B

(b) $(A \cap B \cup(A-B)) \cap C$
\{the solution is the shaded areas\}

A intersect B
(A intr. B un. $(A-B)$) intr. C
Note that $A \cap B \cup(A-B)$ is equal to A.

Exercise 3 (15 Points)

Give an example of two uncountable sets A and B such that $A-B$ is:
(a) Finite $\mathbf{A}=\mathbb{R}, \mathbf{B}=\mathbb{R}-\{\mathbf{0}\}$. $\mathbf{A}-\mathbf{B}=\{\mathbf{0}\}$ (Finite)
(b) Countable infinite $\mathbf{A}=\mathbb{R}, \mathbf{B}=\mathbb{R}-\mathbb{N}$. $\mathbf{A}-\mathbf{B}=\mathbb{N}($ CountablyInfinite)
(c) Uncountable infinite $\mathbf{A}=\mathbb{R}, \mathbf{B}=\mathbb{R}-[\mathbf{0}, \mathbf{1}]$. $\mathbf{A}-\mathbf{B}=[\mathbf{0}, \mathbf{1}]$ (Uncountable)

Exercise 4 (15 Points)

Prove that if A is uncountable and $A \subseteq B$, then B is uncountable.

Solution 1: Proof by contradiction

Assume A is uncountable and $A \subseteq B$. For the sake of contradiction, assume B is countable. if B is countable then there exists a bijection (one-to-one and onto) (f) between B and \mathbb{N}.

$$
f: B \rightarrow \mathbb{N}
$$

Construct the function $\left.f\right|_{A}$ by restricting the domain of f to $A \subseteq B$, i.e:

$$
\left.f\right|_{A}: A \rightarrow \mathbb{N}:\left.f\right|_{A}(x)=f(x)
$$

$\left.f\right|_{A}$ is defined the same was as f but with a smaller domain. Since f is injective (one-to-one), then $\left.f\right|_{A}$ is also one-to-one (note that $\left.f\right|_{A}$ may no longer be onto).
However, since A is uncountable, then there does not exist any injective function from it to \mathbb{N}. Contradiction, B must be uncountable.

Solution 2:

Assume that B is countable. Then the elements of B can be listed as b_{1}, b_{2}, b_{3} Because A is a subset of B, taking the subsequence of $\left\{b_{n}\right\}$ that contains the terms that are in A only gives a listing of the elements of A. Because A is uncountable, this is impossible, and therefore B can't be countable

Exercise 5 (15 Points)

Determine whether each of these sets is finite, countably infinite, or uncountable. For those that are countably infinite, exhibit a one-to-one correspondence between the set of positive integers and that set.
(a) The negative integers. Countably infinite: $\mathbf{f}(\mathbf{x})=-\mathbf{x}$
(b) The even integers. Countably infinite: $\mathbf{f}(\mathbf{x})= \begin{cases}x & \text { if } \mathbf{x} \text { is even } \\ -x-1 & \text { if } \mathbf{x} \text { is odd }\end{cases}$
(c) The real numbers between 0 and 1 . Uncountable
(d) The positive integers less than $1,000,000,000$. Countable, because they are finite
(e) The integers that are multiples of 7. Countably infinite: $\mathbf{f}(\mathbf{x})= \begin{cases}7 \times \frac{x}{2} & \text { if } \mathbf{x} \text { is even } \\ 7 \times \frac{-x-1}{2} & \text { if } \mathbf{x} \text { is odd }\end{cases}$
(f) The odd negative integers. Countably infinite: $\mathbf{f}(\mathbf{x})=-\mathbf{2 x}+\mathbf{1}$
(g) The integers with absolute value less than $1,000,000$. Countable, because they are finite
(h) The set $A \times Z^{+}$where $A=2,3$. Countably infinite: $f(\mathbf{x})= \begin{cases}\left(2, \frac{x}{2}\right) & \text { if } \mathbf{x} \text { is even } \\ \left(3, \frac{x+1}{2}\right) & \text { if } \mathbf{x} \text { is odd }\end{cases}$
(i) All bit strings not containing the bit 0 . Countable: for any integer n, the corresponding bit string would be a string formed of $n 0 s$

Exercise 6 (15 Points)

Prove that the set of all polynomials of degree ≤ 2 with integer coefficients is countable. [Hint: use the proof that Q is countable shown in the slides]

Solution:

Let P_{2} be the set of all polynomials of degree ≤ 2 with integer coefficients.
Thus $P_{2}=\left\{a x^{2}+b x+c \mid a, b, c\right.$ are integers $\}$.
Since the set $\mathbb{N} \times \mathbb{N}$ is countable, therefore $\mathbb{Z} \times \mathbb{Z}$ is countable also countable $(|\mathbb{N}|=|\mathbb{Z}|$ since there is a bijection between the two sets, and therefore we can substitute \mathbb{N} by \mathbb{Z}). Again, \mathbb{Z}^{2} is countable, $\mathbb{Z}^{2} \times \mathbb{Z}=\mathbb{Z}^{3}$ is also countable.

Define a function f: $\mathbb{Z}^{3} \rightarrow P_{2}$ by the formula:

$$
F(a, b, c)=a x^{2}+b x+c
$$

where $a, b, c \in \mathbb{Z}$
By construction the function f is a one-to-one correspondence. Hence P_{2} is countable.

Exercise 7 (10 Points)

Can you conclude that $\mathrm{A}=\mathrm{B}$ if A, B, and C are sets such that:
(a) $A \cup C=B \cup C$. Solution:

No, Counter example: $A=\{1,2\}, C=\{1,2,3\}, B=\{3\} . A \cup C=B \cup C=\{1,2,3\}$
(b) $A \cap C=B \cap C$. Solution:

No, Counter example: $A=\{1,2,3\}, C=\{1,2\}, B=\{1,2,4\} . A \cap C=B \cap C=\{1,2\}$
(c) $A-C=B-C$. Solution:

No, Counter example: $A=\{1,2,3\}, C=\{3,4\}, B=\{1,2,4\} . A-C=B-C=\{1,2\}$

Exercise 8 (10 Points)

Find the domain and range of these functions.
(a) The function that assigns to each non-negative integer its first digit.

Domain is the set of non-negative integers (naturals). Range $=\{0,1,2,3,4,5,6,7,8,9\}$ (Note that non-negative integers contain the integer 0 , and the first digit of 0 is 0 , so 0 is in the range).
(b) The function that assigns to a bit string the number of one bits in the string. Domain is all bit strings. Range is the naturals.
(c) The function that assigns to each non-negative integer its 2 nd power and returns the last digit
Domain is the set of non-negative integers (naturals). Range $=\{0,1,4,9,6,5\}$. You can find the set by taking all possible last digits (0 to 9), getting the square of the digit, and finding its unit digit.
Recall the expansion of $(10 a+b)^{2}$, where a and b are integers, and $0 \leq b<10$
(d) The function that raises 2 to the non-negative integer assigned to the function

Domain is the set of non-negative integers (naturals). Range is the powers of $2(1,2,4,8 \ldots)$.

Exercise 9 (10 Points)

Give an example of a function from \mathbb{Z} to \mathbb{N} that is
(a) One-to-one but not onto.

$$
f: \mathbb{Z} \rightarrow \mathbb{N}: f(x)= \begin{cases}2 x+2 & \text { if } x \geq 0 \\ -2 x-1 & \text { if } x<0\end{cases}
$$

0 has no preimage
(b) Onto but not One-to-One.

$$
\begin{aligned}
& f: \mathbb{Z} \rightarrow \mathbb{N}: f(x)=|x| \\
& \text { for any } x, f(x)=f(-x)
\end{aligned}
$$

(c) Both onto and one-to-one (but different from the identity function).

$$
f: \mathbb{Z} \rightarrow \mathbb{N}: f(x)= \begin{cases}2 x & \text { if } x \geq 0 \\ -2 x-1 & \text { if } x<0\end{cases}
$$

(d) Neither one-to-one nor onto.

$$
f: \mathbb{Z} \rightarrow \mathbb{N}: f(x)=0
$$

Exercise 10 (10 Points)

Let $f(x)=a x^{2}+b x+c$ and $g(x)=3 d x-2 e$, where a, b, c, d and e are constants. Determine necessary and sufficient conditions on the constants a, b, c, d and e so that $f \circ g=g \circ f$.

Solution:

$f \circ g=a(3 d x-2 e)^{2}+b(3 d x-2 e)+c=9 a d^{2} x^{2}+(3 b d-12 a d e) x+\left(4 a e^{2}-2 b e+c\right)$
$g \circ f=3 d\left(a x^{2}+b x+c\right)-2 e=3 a d x^{2}+3 b d x+(3 c d-2 e)$
Therefore, if $f \circ g=g \circ f$, then the following should be equal:

- $9 a d^{2}=3 a d \rightarrow(3 d=1 \vee a=0 \vee d=0)$
- $3 b d-12 a d e=3 b d \rightarrow(12 a d e=0) \leftrightarrow(a=0 \vee d=0 \vee e=0)$
- $\left(4 a e^{2}-2 b e+c\right)=(3 c d-2 e) \rightarrow 2 e(2 a e-b+1)=c(3 d-1)$

Exercise 11 (10 Points)

Determine whether the symmetric difference is associative; that is, if A, B, and C are sets, does it follow that $A \oplus(B \oplus C)=(A \oplus B) \oplus C$? Note: The symmetric difference of A and B , denoted by $A \oplus B$, is the set containing those elements in either A or B , but not in both A and B .

Solution:

A	B	C	$A \oplus B$	$B \oplus C$	$A \oplus(B \oplus C)$	$(A \oplus B) \oplus C$
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	1	1	1	1
0	1	1	1	0	0	0
1	0	0	0	1	1	1
1	0	1	1	1	0	0
1	1	0	0	1	0	0
1	1	1	0	0	1	1

Exercise 12 (10 Points)

Write a closed form notation for the following summations
(a)

$$
\sum_{i=1}^{2 n}\left(1-1^{i}\right)=\sum_{i=1}^{2 n}(1-1)=\sum_{i=1}^{2 n} 0=0
$$

(b)

$$
\sum_{i=1}^{n}\left(3^{i}-2^{i}\right)=\sum_{i=1}^{n} 3^{i}-\sum_{i=1}^{n} 2^{i}=3 \cdot \frac{3^{n}-1}{2}-2 \cdot\left(2^{n}-1\right)
$$

(c)

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} i j=\sum_{i=1}^{n} i \sum_{j=1}^{m} j=\frac{n(n+1)}{2} \frac{m(m+1)}{2}=\frac{n(n+1) m(m+1)}{4}
$$

(d)

$$
\begin{aligned}
& \sum_{i=1}^{n} \sum_{j=1}^{m}(2 i+3 j)=\sum_{i=1}^{n}\left(\sum_{j=1}^{m} 2 i+\sum_{j=1}^{m} 3 j\right) \\
& \quad=\sum_{i=1}^{n}\left(2 i \sum_{j=1}^{m} 1+3 \sum_{j=1}^{m} j\right) \\
& \quad=\sum_{i=1}^{n}\left(2 i m+\frac{3 m(m+1)}{2}\right) \\
& =\sum_{i=1}^{n}(2 i m)+\sum_{i=1}^{n}\left(\frac{3 m(m+1)}{2}\right) \\
& =2 m \sum_{i=1}^{n} i+\left(\frac{3 m(m+1)}{2}\right) \sum_{i=1}^{n} 1 \\
& = \\
& =2 m \frac{n(n+1)}{2}+\frac{3 m(m+1) n}{2} \\
& \quad=\frac{2 m n(n+1)}{2}+\frac{3 m(m+1) n}{2} \\
& =
\end{aligned}
$$

(e) Compact solution - Can be expanded step by step as in part (d)

$$
\begin{gathered}
\sum_{i=1}^{n} \sum_{j=1}^{m}\left(2 i^{3}+3 j^{2}\right)=m \sum_{i=1}^{n} 2 i^{3}+n \sum_{j=1}^{m} 3 j^{2} \\
=2 m \sum_{i=1}^{n} i^{3}+3 n \sum_{j=1}^{m} j^{2} \\
=2 m\left(\frac{n^{2}(n+1)^{2}}{4}\right)+3 n\left(\frac{m(m+1)(2 m+1)}{6}\right)
\end{gathered}
$$

Exercise 13 (10 Points)

Write the product notation of $C(n, r)=\frac{n!}{r!\times(n-r)!}$

Solution:

$$
\begin{gathered}
C(n, r)=\frac{n!}{r!\times(n-r)!}=\frac{n \cdot(n-1) \cdot \ldots \cdot(n-r+1)}{r!} \\
\frac{\prod_{i=1}^{n} i}{\prod_{j=1}^{r} j \times \prod_{k=1}^{n-r} k}=\frac{\prod_{i=n-r+1}^{n} i}{\prod_{j=1}^{r} j}=\prod_{i=1}^{r} \frac{n-i+1}{i}
\end{gathered}
$$

Exercise 14 (10 Points)

Prove or disprove each of these statements about the floor and ceiling functions.
(a) $\lfloor\lceil x\rceil\rfloor=\lceil x\rceil$ for all real numbers x.

We have $\lceil x\rceil \in \mathbb{Z}$ By definition. Also, $\lfloor z\rfloor=z$ for any $z \in \mathbb{Z}$
Therefore $\lfloor\lceil x\rceil\rfloor=\lceil x\rceil$ for all reals.
(b) $\lfloor x+y\rfloor=\lfloor x\rfloor+\lfloor y\rfloor$ for all real numbers x and y.

Take $x=1.5, y=1.8 .\lfloor x+y\rfloor=3 .\lfloor x\rfloor+\lfloor y\rfloor=2$. Disproved by counter-example.
(c) $\left\lceil\frac{\left\lceil\frac{x}{2}\right\rceil}{2}\right\rceil=\left\lceil\frac{x}{4}\right\rceil$ for all real numbers x.

Every real number can be written as $4 q+r$ where $q \in \mathbb{Z}$ and $0 \leq r<4(r \in \mathbb{R})$.

$$
\begin{aligned}
\left\lceil\frac{\left\lceil\frac{4 q+r}{2}\right\rceil}{2}\right\rceil=\left\lceil\frac{\left\lceil 2 q+\frac{r}{2}\right\rceil}{2}\right\rceil= & \left\lceil\frac{2 q+\left\lceil\frac{r}{2}\right\rceil}{2}\right\rceil=\left\lceil q+\frac{\left\lceil\frac{r}{2}\right\rceil}{2}\right\rceil=q+\left\lceil\frac{\left\lceil\frac{r}{2}\right\rceil}{2}\right\rceil \\
& \text { since } q \in \mathbb{Z}
\end{aligned}
$$

Also:

$$
\left\lceil\frac{4 q+r}{4}\right\rceil=\left\lceil q+\frac{r}{4}\right\rceil=q+\left\lceil\frac{r}{4}\right\rceil
$$

Therefore, the property holds for all real numbers if and only if $\left\lceil\frac{\left\lceil\frac{r}{2}\right\rceil}{2}\right\rceil=\left\lceil\frac{r}{4}\right\rceil$ holds for the real numbers in $[0,4)$.
Take the case where $x=0$. Both sides will be 0 , so it holds.
Take the case $0<x \leq 2$:

$$
\left\lceil\frac{\left\lceil\frac{x}{2}\right\rceil}{2}\right\rceil=\left\lceil\frac{1}{2}\right\rceil=1 \text { and }\left\lceil\frac{x}{4}\right\rceil=1
$$

Finally, take the case where $2<x<4$:

$$
\left\lceil\frac{\left\lceil\frac{x}{2}\right\rceil}{2}\right\rceil=\left\lceil\frac{2}{2}\right\rceil=1 \text { and }\left\lceil\frac{x}{4}\right\rceil=1
$$

Therefore, it holds for all real numbers in $[0,4)$ (Exhaustive Proof), implying that the original statement holds for all real numbers.
(d) $\lfloor\sqrt{\lceil x\rceil}\rfloor=\lfloor\sqrt{x}\rfloor$ for all real numbers x.

Take $x=3.1 .\lfloor\sqrt{\lceil x\rceil}\rfloor=\lfloor\sqrt{\lceil 3.1\rceil}\rfloor=\lfloor\sqrt{4}\rfloor=2$.
Note that $1.8^{2}=3.24>3.1$. Therefore $\sqrt{3.1}<1.8,\lfloor\sqrt{1.8}\rfloor \leq 1<2$.
Disproved by a Counter example.
(e) $\lfloor x\rfloor+\lfloor y\rfloor+\lfloor x+y\rfloor \leq\lfloor 2 x\rfloor+\lfloor 2 y\rfloor$ for all real numbers x and y.

Take $x=a+\alpha$, and $y=b+\beta$, where $a, b \in \mathbb{Z}$ and $0 \leq \alpha, \beta<1$

$$
\begin{gathered}
\lfloor x\rfloor+\lfloor y\rfloor+\lfloor x+y\rfloor \leq\lfloor 2 x\rfloor+\lfloor 2 y\rfloor \\
\leftrightarrow\lfloor a+\alpha\rfloor+\lfloor b+\beta\rfloor+\lfloor a+\alpha+b+\beta\rfloor \leq\lfloor 2 a+2 \alpha\rfloor+\lfloor 2 b+2 \beta\rfloor \\
\leftrightarrow a+\lfloor\alpha\rfloor+\lfloor\beta\rfloor+a+b+\lfloor\alpha+\beta\rfloor \leq 2 a+\lfloor 2 \alpha\rfloor+2 b+\lfloor 2 \beta\rfloor \text { since } a, b \in \mathbb{Z} \\
\leftrightarrow\lfloor\alpha\rfloor+\lfloor\beta\rfloor+\lfloor\alpha+\beta\rfloor \leq+\lfloor 2 \alpha\rfloor+\lfloor 2 \beta\rfloor
\end{gathered}
$$

Now we can use proof by cases (6 cases, but can be reduced to 4 without loss of generality):

1. $(0 \leq \alpha<0.5) \wedge(0 \leq \beta<0.5) \rightarrow$

- $\lfloor\alpha\rfloor=\lfloor\beta\rfloor=0$
- $0 \leq \alpha+\beta<1 \rightarrow\lfloor\alpha+\beta\rfloor=0$
- $0 \leq 2 \alpha, 2 \beta<1 \rightarrow\lfloor 2 \alpha\rfloor=\lfloor 2 \beta\rfloor=0$

And therefore $0 \leq 0$ which is true
2. $(0.5 \leq \alpha<1) \wedge(0.5 \leq \beta<1) \rightarrow$

- $\lfloor\alpha\rfloor=\lfloor\beta\rfloor=0$
- $1 \leq \alpha+\beta<2 \rightarrow\lfloor\alpha+\beta\rfloor=1$
- $1 \leq 2 \alpha, 2 \beta<2 \rightarrow\lfloor 2 \alpha\rfloor=\lfloor 2 \beta\rfloor=1$

And therefore $0+1 \leq 1+1 \rightarrow 1 \leq 2$ which is true
3. w.l.o.g, $(0 \leq \alpha<0.5) \wedge(0.5 \leq \beta<1) \wedge(\alpha+\beta \geq 1) \rightarrow$

- $\lfloor\alpha\rfloor=\lfloor\beta\rfloor=0$
- $1 \leq \alpha+\beta<2 \rightarrow\lfloor\alpha+\beta\rfloor=1$
- $0 \leq 2 \alpha<1 \rightarrow\lfloor 2 \alpha\rfloor=0$
- $1 \leq 2 \beta<2 \rightarrow\lfloor 2 \beta\rfloor=1$

And therefore $0+1 \leq 0+1 \rightarrow 1 \leq 1$ which is true
4. w.l.o.g, $(0 \leq \alpha<0.5) \wedge(0.5 \leq \beta<1) \wedge(\alpha+\beta<1) \rightarrow$

- $\lfloor\alpha\rfloor=\lfloor\beta\rfloor=0$
- $0 \leq \alpha+\beta<1 \rightarrow\lfloor\alpha+\beta\rfloor=0$
- $0 \leq 2 \alpha<1 \rightarrow\lfloor 2 \alpha\rfloor=0$
- $1 \leq 2 \beta<2 \rightarrow\lfloor 2 \beta\rfloor=1$

And therefore $0+0 \leq 0+1 \rightarrow 0 \leq 1$ which is true

Therefore, it has been proven by cases that $\lfloor x\rfloor+\lfloor y\rfloor+\lfloor x+y\rfloor \leq\lfloor 2 x\rfloor+\lfloor 2 y\rfloor$ for all real numbers x and y

