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Exercise 1 (10 Points)

Let A, B, and C be sets. Show that:
(a) (AUB) C(AUBUQ)

Solution:

{z|z € (AU B)} (Assumption)

— {z|z € AV x € B} (Definition of Union)
—{zjlr € Avz € BVz e C} (Addition)

— {zjxr € (AUBUC)} (Definition of Union)

(b) (AnBNC)C (ANB)

Solution:

{z|lx € (AN BNC)} (Assumption)

— {zlr € ANz € BAzx e C} (Definition of Intersection)
— {z|r € ANz € B} (Simplification)

— {z|r € AN B} (Definition of Intersection)

() (A—B)—-CCA-C

Solution:

{z|z € ((A— B) — C)} (Assumption)

—{z|((x € ANz & B) Nz & C)} (Definition of Difference)

—{z|((x € ANz ¢ C)} (Simplification - After use of commut. and Assoc. Laws on A)
— {z]r € (A— C)} (Definition of Difference)

(d) (A-=C)Nn(C — B) = ¢ Solution:

{z|]x € (A—C)N(C — B)} (Assumption)

—{z|((x e ANz g€ C)A(x € C ANz ¢ B)} (Definition of Difference and Intersection)
—{z|(zr € AN(z € C Nz eC) Az ¢ B} (Commutativity)

— {z|z ¢ C ANz € C} (Simplification)

Contradiction, Therefore the logical expression is unsatisfiable (always has truth value
“false”), which means that (A — C) N (C — B) has no elements.

Hence, (A-C)N(C—-B)=¢

(€) (B—A)U(C—A)=(BUC)—A

{zlx € (B—A)U(C —A)} (Assumption)

—{zf(re BNz g A)V(z € CAx g A)} (Definition of Difference and Union)
< {z|(xr € BVx € C) ANz ¢ A} (Distribution)

< {z]jx € (BUC) — A} (Definition of Difference and Union)

Since every step is an equivalence then (B — A)U (C — A)=(BUC) - A



Exercise 2 (10 Points)

Draw The Venn Diagrams for each of these combinations of the sets A, B, and C.

(a) (ANB)U(A-C)
{the solution is the shaded areas}

a2
\_

A B C
A intersect B

(b) (ANBU(A—-B))nC
{the solution is the shaded areas}

A B C
A intersect B
(Aintr. Bun. (A-B)) intr. C

Note that AN B U (A — B) is equal to A.



Exercise 3 (15 Points)

Give an example of two uncountable sets A and B such that A — B is:

(a) Finite A =1R,B=1R — {0}. A — B = {0}(Finite)

(b) Countable infinite A = IR,B =R — IN. A — B = IN(CountablyInfinite)
(c) Uncountable infinite A =1R,B =1R —[0,1]. A — B = [0,1](Uncountable)

Exercise 4 (15 Points)

Prove that if A is uncountable and A C B, then B is uncountable.

Solution 1: Proof by contradiction
Assume A is uncountable and A C B. For the sake of contradiction, assume B is countable.
if B is countable then there exists a bijection (one-to-one and onto) (f) between B and IN.

f:B—> N

Construct the function f|, by restricting the domain of f to A C B, i.e:

flat A= IN: fly(2) = flz)

fl4 is defined the same was as f but with a smaller domain. Since f is injective (one-to-one),
then f|, is also one-to-one (note that f|, may no longer be onto).

However, since A is uncountable, then there does not exist any injective function from it to IN.
Contradiction, B must be uncountable.

Solution 2:

Assume that B is countable. Then the elements of B can be listed as by, by, b3 Because A is a
subset of B, taking the subsequence of {b,} that contains the terms that are in A only gives a
listing of the elements of A. Because A is uncountable, this is impossible, and therefore B can’t
be countable

Exercise 5 (15 Points)

Determine whether each of these sets is finite, countably infinite, or uncountable. For those that
are countably infinite, exhibit a one-to-one correspondence between the set of positive integers
and that set.

(a) The negative integers. Countably infinite: f(x) = —x

(b) The even integers. Countably infinite: f(x) = { r if x is even

—x—1 ifxis odd
(c) The real numbers between 0 and 1. Uncountable
(d) The positive integers less than 1,000,000,000. Countable, because they are finite

7 % % if x is even
7 X _x2_1 if x is odd

(e) The integers that are multiples of 7. Countably infinite: f(x) = {



(f) The odd negative integers. Countably infinite: f(x) = —2x+ 1

(g) The integers with absolute value less than 1,000,000. Countable, because they are
finite

(2, if x is even

(3, %) ifx is odd

{08

(h) The set A x ZT where A = 2,3. Countably infinite: f(x) = {

(i) All bit strings not containing the bit 0. Countable: for any integer n, the corresponding
bit string would be a string formed of n 0Os

Exercise 6 (15 Points)

Prove that the set of all polynomials of degree < 2 with integer coefficients is countable. [Hint:
use the proof that @ is countable shown in the slides]

Solution:

Let P be the set of all polynomials of degree < 2 with integer coefficients.

Thus P, = {ax? + bz + ¢ | a,b, c are integers}.

Since the set N x N is countable, therefore Z x Z is countable also countable (|N| = |Z| since
there is a bijection between the two sets, and therefore we can substitute N by Z). Again, Z>
is countable, Z? x Z = 73 is also countable.

Define a function f: Z? — P, by the formula:
F(a,b,c) = ax® 4 bz + ¢
where a,b,c € Z
By construction the function f is a one-to-one correspondence. Hence P» is countable.
Exercise 7 (10 Points)

Can you conclude that A = B if A, B, and C are sets such that:

(a) AUC =BUC. Solution:
No, Counter example: A ={1,2},C ={1,2,3},B={3}. AUC=BUC ={1,2,3}

(b) ANC =BnNC. Solution:
No, Counter example: A ={1,2,3},C ={1,2},B={1,2,4}. AnC=BnC ={1,2}

(¢) A—C = B —C. Solution:
No, Counter example: A ={1,2,3},C ={3,4},B={1,2,4}. A—-C=B—-C=1{1,2}



Exercise 8 (10 Points)

Find the domain and range of these functions.

(a) The function that assigns to each non-negative integer its first digit.
Domain is the set of non-negative integers (naturals). Range = {0,1,2,3,4,5,6,7,8,9}
(Note that non-negative integers contain the integer 0, and the first digit of 0 is 0, so 0 is
in the range).

(b) The function that assigns to a bit string the number of one bits in the string.
Domain is all bit strings. Range is the naturals.

(c) The function that assigns to each non-negative integer its 2nd power and returns the last
digit
Domain is the set of non-negative integers (naturals). Range = {0,1,4,9,6,5}. You can
find the set by taking all possible last digits (0 to 9), getting the square of the digit, and
finding its unit digit.
Recall the expansion of (10a + b)?, where a and b are integers, and 0 < b < 10

(d) The function that raises 2 to the non-negative integer assigned to the function
Domain is the set of non-negative integers (naturals). Range is the powers of 2 (1, 2,4, 8 ...).

Exercise 9 (10 Points)

Give an example of a function from Z to N that is
(a) One-to-one but not onto.

. o[22 x>0
f'Z%N‘f(i)_{2x1 if 2 <0

0 has no preimage
(b) Onto but not One-to-One.
f+Z—=N: f(z) = |z]
for anyz, f(r) = f(-x)

(c) Both onto and one-to-one (but different from the identity function).

2x ifz>0
f'Z%N'f(x)_{ 2 —1 ifz<0

(d) Neither one-to-one nor onto.
f:Z—N:f(x)=0



Exercise 10 (10 Points)

Let f(z) = ax® + bz + c and g(z) = 3dx — 2e, where a, b, ¢, d and e are constants. Determine
necessary and sufficient conditions on the constants a, b, ¢, d and e so that fog=go f.

Solution:
fog=a(3dr —2¢)? + b(3dx — 2¢) + ¢ = 9ad?z? + (3bd — 12ade)x + (4ae?® — 2be + c)
go f = 3d(ax?® + bx + ¢) — 2e = 3adx?® + 3bdx + (3cd — 2e)

Therefore, if f o g = go f, then the following should be equal:
e 9ad?> =3ad - 3d=1Va=0vd=0)
e 3bd — 12ade = 3bd — (12ade =0) <» (a=0Vd=0Ve=0)

o (4ae? — 2be + c) = (3cd — 2e) — 2e(2ae — b+ 1) = ¢(3d — 1)

Exercise 11 (10 Points)

Determine whether the symmetric difference is associative; that is, if A, B, and C are sets,
does it follow that A @ (B@® C) = (A® B) & C? Note: The symmetric difference of A and B,
denoted by A® B, is the set containing those elements in either A or B, but not in both A and B.

Solution:
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Exercise 12 (10 Points)

Write a closed form notation for the following summations

(a)

2n 2n

2n
d-1H)=>(1-1)=> 0=0
=1

i=1 i=1




iij _ n(n+1)m(m+ 1) _ n(n+ 1)m(m+ 1)

2mn(n + 1) 3m(m+ 1)n
= +
2 2
mn(n+1) + 3m(m+1)n
2

(e) Compact solution - Can be expanded step by step as in part (d)

n m n m
DD @437 =m) 2% +n) 352
i=1 j=1

i=1 j=1

n m
= QmZiS—i-SanQ
i=1 j=1

m(m+1)(2m + 1)
6

)



Exercise 13 (10 Points)

Write the product notation of C'(n,r) = W'—r)'
Solution:
Cln,r) = n! :n-(n—l)'...-(n—r—f—l)
rl x (n—r)! r!

H§:1 Jx Ik H§:1j ey 1

Exercise 14 (10 Points)

Prove or disprove each of these statements about the floor and ceiling functions.

(a) |Jz]] = [x] for all real numbers z.

We have [z| € Z By definition. Also, |z]| = z for any z € Z
Therefore |[z]] = [z] for all reals.

(b) |z +y] = |z] + |y] for all real numbers = and y.

Take v = 1.5, y = 1.8. |z +y] = 3. |z] + |y] = 2. Disproved by counter-example.

(c) Pgr‘ = [%] for all real numbers x.

Every real number can be written as 4qg + r where ¢ € Z and 0 < r < 4 (r € R).

- ] o e

2 2 2 2

[\

since q € 7

7] o] -0 2

Therefore, the property holds for all real numbers if and only if PQT‘ = {ﬂ holds for the

Also:

IN1h]

real numbers in [0,4).
Take the case where x = 0. Both sides will be 0, so it holds.
Take the case 0 < z < 2:




Finally, take the case where 2 < z < 4:

3]

S RHEEIHE

Therefore, it holds for all real numbers in [0,4) (Exhaustive Proof), implying that the
original statement holds for all real numbers.

|\/Tz]] = |/z] for all real numbers .

Take z = 3.1. |\/[z]] = [\/[3.1]] = [V4] = 2.
Note that 1.82 = 3.24 > 3.1. Therefore v/3.1 < 1.8, [V/1.8] <1 < 2.
Disproved by a Counter example.

lz] + ly] + [z +y] < [2z] + [2y] for all real numbers = and y.
Take r =a+a,and y =b+ 3, where a,b € Zand 0 < o, 5 < 1

=] + [y] + [z +y) < [22] + [2y]
< latal+[b+8]+ la+a+b+ 5] < [2a+2a] + [2b+20]
—a+|al+ [l +a+b+ |a+B] <2a+ [2a] +2b+ 28] since a,beZ
& la) + 18] + la+ 8] < +|2a] + 28]

Now we can use proof by cases (6 cases, but can be reduced to 4 without loss of generality):

1. ( 0<a<05) A (0<B<05)—
e [a] =[B8]=0
e 0<a+f<l—|a+8]/=0
e 0<20,26<1— |20 =|28] =0
And therefore 0 < 0 which is true

2. (05<a<l) A (05<B8<1)—
e [a] =[B]=0
e l<a+f<2—=|a+p] =1
o 1<20,26<2— [2a] = (28] =1
And therefore 0 +1 <1+ 1 — 1 <2 which is true

3. wlo.g, (0<a<05) A (05<B8<1) A (a+82>1)—
o o] =[B]=0
e l<a+f<2—|a+p]=1
e 0<2a<1—[2a] =0
e 1<28<2— (28] =1
And therefore 04+1 <041 — 1 <1 which is true



4. wlog, (0<a<05) A (05<B8<1) A (a+p<1)—
la] =[B] =0

0<a+pB<1l—=|a+pB]=0
0<2a<1—[2a]=0

1<28<2— (28] =1

And therefore 04+0< 041 — 0 <1 which is true

Therefore, it has been proven by cases that || + |y| + [z +y] < [22] 4+ |2y] for all real
numbers x and y
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